Dissecting Natural Mechanisms for Genome Content Variation and the Impact on Phenotypic Variaiton

Using maize as a model system, this project will systematically characterize the extent of genome content variation among diverse genotypes in a plant species, identify the genetic mechanisms responsible for this variation in genome content, and measure the impact on phenotypic variation in plants. The research plan integrates genomics, metabolomics, quantitative genetics, and statistical genetics to further our understanding of genome content variation and the role mechanistic origin plays in phenotypic outcomes. Specifically, this project will 1) identify genome content variation between maize inbred lines using a combination of de novo genome assemblies and exome capture using a combination of short- and long-read sequencing technologies, 2) identify mechanistic signatures that elucidate the origin of genome content variation on a genome-wide scale, 3) implement Genome Wide Association Studies to identify genome content variation associated with quantitative, qualitative, essential, and dispensable phenotypic and chemotypic (surface lipid profiles and kernel content) classes of traits in a diverse panel of maize inbred lines, and 4) use statistical genetic approaches to determine if there is a relationship between the mechanisms that create genome content variation and phenotypic outcomes.

Intellectual Merit: Variation in genome content is becoming more evident across the biosphere, and genome content variation in maize is rampant. Despite the documentation of extensive genome content variation between individuals within species, little is known about the origin of this variation or the impacts it has on phenotypic variation. Understanding how natural mechanistic origins of genome content variation impact phenotypes can provide valuable insights into mechanisms that can be adapted to generate artificial genome content variation through various genome editing and transgenic approaches, which could make a significant contribution to expanding field of synthetic biology. Thus, the knowledge gained from this project can be directly used to maximize outcomes from synthetic biology in maize and other economically important plant species. Moreover, understanding natural mechanisms that drive genome content variation and the impact mechanistic origin has on phenotypic variation will provide fundamental knowledge concerning the relationship between genotype, chemotype, and phenotype, and will improve our ability to dissect the genetic basis of phenotypic variation. Additionally, fundamental insights into natural mechanisms that drive genome content variation and phenotypic impact can be leveraged in traditional plant breeding approaches through improved genomic prediction methods.

Broader Impacts: There is a severe underrepresentation of women, particularly minority women, in STEM fields. Increasing the representation of women in STEM can help improve income gender gaps among the many other societal benefits. Mentorship and training opportunities for young women who express an interest in STEM is an important step toward increasing representation of women in STEM careers. Our team of three female PIs has a passion for engaging females in STEM fields. We propose three synergistic activities aimed at providing young women with both mentoring and valuable training opportunities in genomics, metabolomics, and statistical genetics. The specific proposed activities are 1) summer research experiences for female teachers and high school and undergraduate students including activities centered at building a sense of community among female participants, 2) public engagement through the SCIENCE BOUND and “Taking the Road Less Traveled” programs at ISU with an emphasis on females in STEM, and 3) generating a database of mentorship and training opportunities for females in STEM. 

Funding provided by the National Science Foundation

NSF logo


Foundational Genetic Platform for Improving Food Grade Corn 

The corn chip industry relies on the development of food grade corn hybrids that meet quality specifications necessary for the post-harvest processing chain. However, breeding efforts targeted at breeding food grade corn hybrids, particularly white food grade corn hybrids, have been relatively limited. Currently, large scale evaluation of hybrids in pilot plants is required to determine which hybrids can be managed through a given processing chain, as the specific traits and parameters necessary for a hybrid to be successful are not well understood. This project seeks to identify traits that are effective proxies to determine kernel processing success, evaluate the effective environment on these traits, and identify markers associated with these traits that can packaged as a breeders toolkit for improving food grade corn hybrids for the corn chip processing industry.

Funding provided by PepsiCo


Improving Corn Grain Yield Through Grain Yield Component Traits

In 2012, Minnesota corn growers produced corn on nearly 9M acres statewide, and harvested approximately 1.4 billion bushels of grain. These yields are in part attributable to the fact that breeding efforts in corn to date have focused largely on increasing grain yield. While dramatic improvements have been made, the ceiling for grain yield has not been reached. Understanding the genetic basis of corn grain yield and yield component traits and exploiting that knowledge through commercial varieties is essential to continual yield improvements in the future. Corn has vast genetic resources to explore natural and artificial variation for grain yield and yield components, the latter generally have a higher heritability than grain yield per se. The specific objectives of this project are to 1) Evaluate mutant stocks of seed size candidate genes for phenotypic effects on seed traits, 2) Evaluate transcriptional variation for seed size candidates, 3) Evaluate the relationship between yield component traits and per hectare grain yield, and 4) Dissecting the genetic architecture underlying yield component traits.

Funding provided by the Minnesota Corn Research and Promotion Council

Minnesota Corn Research and Promotion Council


Genomes to Fields Initiative 

The overall objective of this project is to leverage genomic information with phenotypic and environmental data to enable working knowledge and prediction of plant performance under variable growing conditions. G2F is an umbrella initiative to support translation of maize genomic information for the benefit of growers, consumers and society. This public-private partnership is building on publicly funded corn genome sequencing projects to develop approaches to understand the functions of corn genes and specific alleles across environments. Ultimately this information will be used to enable accurate prediction of the phenotypes of corn plants in diverse environments. There are many dimensions to the over-arching goal of understanding genotype-by-environment (GxE) interactions, including which genes impact which traits and trait components, how genes interact among themselves (GxG), the relevance of specific genes under different growing conditions, and how these genes influence plant growth during various stages of development. For more information visit

Genomes to Fields